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Abstract

Particle-reinforced composite materials have been widely used as they can exhibit nearly isotropic material prop-

erties and are often easy to process. Some silicon carbide particle reinforced aluminium composites with high volume

concentration of reinforcement exhibit excellent thermophysical properties and can be used in advanced electronic

packaging. In this paper, a statistical micromechanics-based multi-scale material modelling framework is introduced to

describe the macroscopic effective thermomechanical properties of the particle-reinforced composite. The formulation

differs from most of the existing methods in that the interaction effects among the reinforcing particles are directly

accounted for by considering pair-wise interaction and statistical information on particle distribution is included. The

strain and stress concentration factor tensors that relate the local average strain and stress fields, respectively, to the

corresponding global average fields are derived according to the theory of average fields. The effective coefficient of

thermal expansion for the particle-reinforced composite material is derived. Comparisons of the prediction from the

proposed framework to the results from other existing methods are presented. The results are expressed in analytical

closed-form in terms of the thermal and mechanical properties of the two constituent phases and the volume fraction of

particles. No parameter estimation or data fitting is required.
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1. Introduction

The study of the effective material behaviours of composite materials has been an important subject due

to the wide range of applications of advanced composite materials in various engineering disciplines in-

cluding civil constructions, aerospace structures, and the automobile industry. A comprehensive literature
review on this topic can be found in Tseng (1995). Applications of particle reinforced composites to

advanced technologies such as electronic packaging and smart materials are emerging. Recently, Kim et al.
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(2001) investigated the effective thermal expansion coefficient for silicon carbide particle reinforced alu-

minium composites. A study on the thermomechanical behaviour of porous shape memory alloys can be

found in Qidwai et al. (2001). In this paper, the focus is on the effective thermomechanical behaviours of

general particle reinforced composite materials.
To simplify the derivation, all reinforcing particles are assumed spherical in shape, equal in size, and

embedded firmly in the matrix material. Both the matrix material and the reinforcing particles are within

their elastic limits under the loading condition considered in this work. The particles are distributed ran-

domly among the matrix material. Nevertheless, the proposed framework is capable of modelling more

general problems including the variation of particle size, shape, and the distribution function.

The theory of average fields is introduced as a tool to link the local average stress and strain fields to the

corresponding global averages. Equations relating the local average to the global ones are written in terms

of the stress and strain concentration factor tensors. A statistical micromechanics-based framework is then
applied to derive the stress and stain concentration factor tensors. Since the particles are assumed to be

distributed randomly among the matrix material, it is impractical to consider only a given realisation of the

distribution of particles. Furthermore, the reinforcing particles could be close to each other in the case of

moderately high to high concentration of particles in the composite. The interaction effects among the

particles are therefore an important factor when considering the macroscopic properties of the composite.

However, considering the effects of interaction among all the particles is intractable due to the large number

of particles typically being added to the composite. Under all the condition, the effect of interaction between

two particles is calculated analytically by applying the law of mechanics at the microscopic level. The pair-
wise interaction solution is then averaged among the statistical space to account for the inhomogeneity of

the composite. This leads to an approximate yet closed-form analytical results.

The formulation starts from applying the concept of eigenstrain via the Eshelby�s equivalence principle
to solve the problem of two spherical particles embedded firmly in an infinite elastic solid. Approximate yet

closed-form solutions are derived for this particle-interaction problem. Based on the solutions, an ensemble

average is performed to account for the statistical distribution of the particles among the matrix material.

Furthermore, a volume average is applied to obtain the global effective properties. The stress and strain

concentration factor tensors for the proposed framework are identified. The average stress and strain fields
for particle-reinforced composite materials under different loading conditions can be obtained for both of

the cases that with and without considering the inter-particle-interaction effect.

Based on the concept of the theory of average fields, the macroscopic thermal expansion coefficient for

the particle-reinforced composite is derived through the stress and strain concentration factor tensors. The

effect of thermal–mechanical interaction is included in the results via the theory of average fields.

The derived thermal expansion coefficient differs from the results from other existing approaches in that the

interaction effects among the reinforcing particles are directly accounted for and explicit closed-form

analytical expressions are obtained. In addition, the proposed framework has the capability of accounting
for the statistical information on the distribution of the reinforcing particles in the composite.

Based on the explicit expression obtained in this study, numerical results from the proposed framework

are compared with the predictions from other existing formulations available in the literature. Finally,

directions for further research based on the proposed framework are pointed out. Future research work

including incorporating the proposed model into the non-linear finite element analysis for boundary value

problems in practical engineering applications is outlined.

This paper is organised in the following fashion. Section 1 contains an introduction of the framework

proposed in this study. Then, the problem of two equal-sized spherical particles imbedded firmly in an
infinitely extended isotropic elastic solid is solved in Section 2 using the concept of distributed eigenstrain

and the Eshelby�s equivalence principle. In Section 3, the average field theory is introduced and the stress

and strain concentration factor tensors for the particle reinforced composite material are derived based on

the solution in Section 2. As an illustrative example for the application of the stress and strain concen-
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tration tensors, the effective elastic moduli for the particle reinforced composite are expressed in explicit

closed-form. Section 5 gives the explicit expression of the effective coefficient of thermal expansion for the

composite considered and compares the prediction with the results from existing approaches. The paper is

concluded in Section 6.
2. Interaction of two spherical inclusions

Let us consider the problem of two spherical inclusions embedded firmly in an infinite elastic solid

subjected to a far field loading. For simplicity, it is assumed that the two spherical inclusions are of the same

size and their radius is denoted as r. As shown in Fig. 1, the locations for the centres of spherical particle 1

and 2 are denoted as x1 and x2, respectively. Apparently, there are two material phases in this problem.
Phase 0 and 1 denotes the matrix and particle phase, respectively. Furthermore, X1 and X2 represent the

domain inside of particle 1 and 2. The vector r denotes the relative position between the two centres.

The framework that is proposed in this paper is valid for the general composite system with any arbitrary

material property for the constituent phase. However, for the simplicity of presentation and mathematical

operation, we assume that the material properties for both the matrix phase and the particle phase are

isotropic and the loading at any local material point remains within the elastic limit. It is further assumed

that the particles do not intersect each other and the material properties of both phases remain unchanged

for the loading considered.
Following the procedure detailed in Tseng (1995), when applying the Eshelby�s equivalence principle to

the inclusion problem without considering the effects of inter-particle interaction, the equation for deter-

mining the unknown eigenstrain, which has been proved to be constant throughout the entire spherical

region, can be written as
�A : e�0 ¼ e0 þ S : e�0 ð1Þ
a

ar

x2

x1

x

y

z

Fig. 1. Two interacting spherical particles.
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where
A ¼ ðC1 � C0Þ�1 � C0 ð2Þ

in which C0 and C1 are the stiffness tensor for the matrix and inclusion phase, respectively. In Eq. (1), S is

the Eshelby�s tensor for a spherical inclusion and is defined as
S ¼
Z

X
Gðx� x0Þdx0; x 2 X ð3Þ
where the tensor Gðx� x0Þ is the Green�s function for elasticity and is defined by the following equation
eðxÞ ¼
Z

Gðx� x0Þ : e�ðx0Þdx0 ð4Þ
in which eðxÞ denotes the strain tensor at the location x, e�ðxÞ is the tensor of eigenstrain, and e�0ðxÞ
represents the eigenstrain tensor for the non-interacting particles. The explicit form for the tensor com-
ponents of S can be found in Mura (1987) for the spherical inclusion considered in the present study. The

Eshelby�s tensor for other shapes of inclusion can be found in Mura (1987). Taking into account the effects

of inter-particle interaction, the integral equation governing the distributed eigenstrain can be expressed as
�A : e�ðxÞ ¼ e0 þ
Z

Xi

Gðx� x0Þ : eðx0Þdx0 þ
Z

Xj

Gðx� x0Þ : eðx0Þdx0 ð5Þ
With the effect of inter-particle interaction, the distributed eigenstrain in both of the spherical inclusions

is no longer uniform. To capture and average amount of perturbation on the eigenstrain from the non-

interacting case, i.e., e�0ðxÞ and following the procedure in Tseng (1995), the following equation can be
obtained after dropping the higher order terms for the parameter q ¼ r=a where r ¼ jrj:
�A : d� ¼ G2ðx1 � x2Þ : e�0 þ S : d� þG1ðx1 � x2Þ : d� ð6Þ

The tensors in Eq. (6) are defined as
d� ¼ 1

X

Z
X
½e�ðxÞ � e�0�dx ð7Þ

G1ðx1 � x2Þ ¼
Z

X1

Gðx� x2Þdx ¼
Z

X2

Gðx1 � xÞdx ð8Þ
and
G2ðx1 � x2Þ ¼
1

X

Z
X1

Z
X2

Gðx� x0Þdx0 dx ð9Þ
See Tseng (1995) for the explicit closed-form expression for the components of the above-mentioned ten-

sors.
Let us now consider the case that many equal-sized spherical particles distributed randomly among

an elastic solid. Based on the solution for Eq. (6), which represents the effect of pair-wise interaction,

and assuming that the distribution of the particles is uniform and no particle overlaps with each other,

ensemble-volume averaged eigenstrain perturbation in a particle can be written as
h�ee�i ¼ C : e�0 ð10Þ
where the components for the isotropic interaction tensor C are defined as
Cijkl ¼ c1dijdkl þ c2ðdikdjl þ dildjkÞ ð11Þ
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in which dij is the Kronecker delta,
c1 ¼
5/

4b2

�
� 2ð1� m0Þ � 5m20 �

4a
3a þ 2b

ð1þ m0Þð1� 2m0Þ
�

ð12Þ
and
c2 ¼
1

2
þ 5/

8b2
11ð1

�
� m0Þ þ 5m20 �

3a
3a þ 2b

ð1þ m0Þð1� 2m0Þ
�

ð13Þ
where
a ¼ 2ð5m0 � 1Þ þ 10ð1� m0Þ
j0

j1 � j0

� �
l0

l1 � l0

� �
ð14Þ
and
b ¼ 2ð4� 5m0Þ þ 15ð1� m0Þ
l0

l1 � l0

ð15Þ
In Eqs. (12) and (13), / denotes the volume fraction of the particles in the composite material under

consideration. In addition, m, j, and l represent the Poisson ratio, bulk modulus, and shear modulus,
respectively, for the corresponding material phase which is denoted via the corresponding subscript.

Subscript 0 is for the matrix phase and subscript 1 denotes the particle phase. For simplicity, both the

matrix phase and the particle phase are assumed to be isotropic and the loading applied is within their

elastic limits.

It is evident from Eq. (10) that if the interaction tensor C is set to be equal to the identity tensor I, which

means that, in indicial notation,
Cijkl ¼ Iijkl ¼
1

2
ðdikdjl þ dildjkÞ ð16Þ
then, the formulation recovers the situation that the effect of inter-particle interaction is neglected.
3. Concentration factor tensors

Due to the high degree of complexity of the arbitrary geometry and concentration of the reinforcing

material, the determination of the exact internal local stress or strain field in a composite system is in

general formidable. In many applications, it is sufficient provided that the average of the field concerned is

available. A method based on the so called stress and strain concentration factors was introduced by Hill

(1963) and later extended by Dvorak (1991) to address the effective properties of composite materials.

In physical sense, the concentration factor defines the relationship between the local field and the average
of the global field. In the case that the stress field is in concern, the stress at any local point for a specific

material phase is related to the average stress for the global composite system via the stress concentration

factor. If only the average of the local stress field is required, upon averaging over the local material phase,

we can obtain the following relationship
ra ¼ Ba : r ð17Þ

where the fourth rank tensor Ba is the volume averaged stress concentration factor tensor for phase a, an
over-bar represents the volume average of the corresponding quantity, and the subscript a denotes the

material phase. Similar definition is made for the strain field.
ea ¼ Aa : e ð18Þ

in which Aa is the volume averaged strain concentration factor tensor for phase a.
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Since the two material phases are assumed not to overlap each other, the averaging process at the global

scale can be separated into two parts––one for each phase. Therefore, the following two equations can be

obtained
r ¼ /0r0 þ /1r1 ð19Þ

e ¼ /0e0 þ /1e1 ð20Þ

with Eqs. (17) and (18), the relationship between the concentration factors for the two phases can be written

as
/0B0 þ /1B1 ¼ I ð21Þ

/0A0 þ /1A1 ¼ I ð22Þ

Moreover, the elastic stiffness and compliance tensors, Ca and Da, respectively, for material phase a relate

the local average stress and strain fields according to the following two equations
ra ¼ Ca : ea ð23Þ

ea ¼ Da : ra ð24Þ

Similarly, the macroscopic elastic properties can be expressed by the following equations through the global

elastic moduli
r ¼ C� : e ð25Þ

e ¼ D� : r ð26Þ

Consequently, from Eqs. (17)–(26), the global effective elastic moduli are expressed in terms of the volume

fractions, elastic moduli of the constituent phases, and the concentration factor tensors as shown in the
following two equations
C� ¼ /0C0 � A0 þ /1C1 � A1 ð27Þ

D� ¼ /0D0 � B0 þ /1D1 � B1 ð28Þ

More concise and convenient forms which depends on quantities related to a single material phase can be
derived with the help of Eqs. (21) and (22):
C� ¼ Ca þ /bðCb � CaÞ � Ab ð29Þ

D� ¼ Da þ /bðDb �DaÞ � Bb ð30Þ
From Eqs. (29) and (30), the global effective elastic moduli for a two-phase composite system can be

obtained provided that any stress or strain concentration factor tensor is available.

As illustrated in Tseng (1995), the equation relating the average strain e, the uniform remote strain e0,
and the average eigenstrain e� can be expressed as:
e ¼ e0 þ /S : e� ð31Þ

With Eqs. (31), (10) and (1), we get
e� ¼ B : e ð32Þ
where
B ¼ C � ½�A� Sþ /S � C��1 ð33Þ
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Averaging the fundamental equation for the Eshelby�s equivalence principle:
C1 : eðxÞ ¼ C0 : ½eðxÞ � e�ðxÞ� ð34Þ
the relationship between the local strain average and the eigenstrain average can be written as
C1 : e1 ¼ C0 : ½e1 � e�� ð35Þ
Further utilising Eq. (2), we arrive at
e1 ¼ A : e� ð36Þ
then, with Eq. (31),
e1 ¼ �ðA � BÞ : e ð37Þ
Hence, upon comparing with Eq. (37) with Eq. (18), the strain concentration factor tensor considering the

effect of inter-particle interaction can be written as
A1 ¼ �A � B ð38Þ
and the corresponding stress concentration factor tensor can be derived by using Eqs. (27) and (28). The

explicit expression for the stress concentration factor tensor takes the following form
B1 ¼ �C1 � A � B � ½I� /B��1 � C�1
0 ð39Þ
The tensor components for B1 can be obtained by carrying out the lengthy tensor operation in Eq. (39). In

this study, to ensure the correctness of the formulation, two symbolic mathematical manipulation software,

Maple and Mathematica, have been used to facilitate the derivation of the complex analytical expression

and operation. The fourth rank tensor B1 is found to be isotropic and its components are
ðB1Þijkl ¼ b1dijdkl þ b2ðdikdjl þ dildjkÞ ð40Þ
where
3b1 þ 2b2 ¼
30j1ð1� m0Þð3c1 þ 2c2Þ

ðj0 � j1Þ½ð3a þ 2bÞ þ 20ð1� 2m0Þð3c1 þ 2c2Þ�
ð41Þ
and
b2 ¼
15l1ð1� m0Þc2

ðl1 � l0Þ½b þ 2ð7� 5m0Þ/c2�
ð42Þ
4. Effective elastic properties

As an example, the stress and strain concentration factor tensors derived in the previous section are

employed to construct the effective elastic properties for particle reinforced composites. Through Eqs. (29)

and (39), the effective elastic stiffness tensor incorporating the effect of inter-particle interaction reads
C� ¼ C0 � fI� /C � ð�A� Sþ /S � CÞ�1g ð43Þ
It is noted that Eq. (43) recovers the results from the Mori–Tanaka method if the effect of inter-particle

interaction is neglected, i.e., letting C ! I or equivalently setting c1 ! 0 and c2 ! 1=2.
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Since the particles are assumed to be distributed uniformly among the matrix material, the composite is

isotropic. Therefore, the effective elastic property can be represented by the effective bulk modulus j� and

the effective shear modulus l� can be explicitly written as
j� ¼ j0 1

�
þ 30ð1� m0Þ/ð3c1 þ 2c2Þ
3a þ 2b � 10ð1þ m0Þ/ð3c1 þ 2c2Þ

�
ð44Þ
and
l� ¼ l0 1

�
þ 30ð1� m0Þ/c2

b � 4ð4� 5m0Þ/c2

�
ð45Þ
5. Effective thermal conductivity

The effective thermal conductivity for the particle-reinforced composite can be obtained via the pure

mechanical concentration factor tensors, i.e., the stress and strain concentration factor tensors in the

present study. For detailed discussion, please see Dvorak and Chen (1992).

Assuming that the constitutive equation of thermoelasticity for phase a is given as
ðraÞijkl ¼ kadijekk þ 2leij � badijh ð46Þ
where h denotes the temperature and the volumetric thermal expansion coefficient is defined as
ba ¼ 3aaja ð47Þ
in which aa is the linear thermal expansion coefficient for phase a. Similar to the notation used for

the effective elastic properties, a subscript of * represents the quantity corresponding to the composite.
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Fig. 2. Comparison with other existing results.



Table 1

Material properties for the numerical example

a (10�6/�C) E (106 psi) m

Matrix 13.80 6.8 0.13

Particle 9.40 28.0 0.30
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Furthermore, let us assume that the second rank tensors b0 and b1 denote the thermal stress for the matrix

and the particle phase, respectively. The tensor components are
ðbaÞij ¼ �badij ¼ �3aajadij ð48Þ
Using the stress and strain concentration factor tensors, the effective coefficient of thermal expansion can be

written as
a� ¼ a1
j1

j�
þ 1

j�
ða1j1 � a0j0Þ

j� � j1

j1 � j0

ð49Þ
where the effective bulk modulus j� for the particle reinforced composite is given in Eq. (44).

The results in Eq. (49) incorporate the effect of inter-particle interaction. Fig. 2 shows the comparison of

the prediction based on Eq. (49) with the other models discussed in Tummala and Friedberg (1970). In the

numerical calculation, the material properties in Table 1 are utilised.

From Fig. 2, the prediction from the present study show similar trend with the results from the other

models and lies within the curves for the methods proposed by Kerner and Turner. The thermal expansion

coefficient decreases as the volume fraction of the particle increases. This is consistent with the physical
sense since the particle phase has a smaller thermal expansion coefficient.
6. Conclusions

In summary, this paper presents a framework for the theoretical prediction on effective macroscopic

thermal–mechanical properties for particle-reinforced composite materials. Closed-form and analytical

explicit expressions for the effective coefficient of thermal conductivity are derived. Interaction effects
among the reinforcing particles are accounted for by considering the pair-wise interaction between two

particles. The ensemble-volume averaging process is applied to account for the statistical distribution of

particles. The theory of average fields is employed to relate the local average fields to the global averages via

the stress and strain concentration factor tensors. Furthermore, the stress and strain concentration factor

tensors are derived for the proposed framework. Finally, the macroscopic effective coefficient of thermal

conductivity is obtained. Comparisons of the predictions from the proposed framework with other existing

methods are presented. The effect of inter-particle interaction on the thermal coefficient of expansion is

accounted for directly through taking the statistical average on the solution of the pair-wise inter-particle
interaction problem. This is the major difference between the present study and other existing models. In

addition, the present framework is capable of capturing the statistical distribution on the locations of the

reinforcing particles. The formulation recovers the non-interacting solution if the effects of inter-particle

interaction are neglected.

Further research work is undertaken by the author to incorporate the effective thermal coefficient of

expansion to the linear and non-linear finite element analysis. The approach is similar to the work in Tseng

(1995) where the effective elastic and elasto–visco-plastic material properties are implemented into non-

linear and time-dependent finite element analysis to solve boundary value problems. The results of the
present study will enable the numerical analysis of the thermomechanical behaviours of particle reinforced
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composite materials via finite element analysis. Boundary value problems can be solved for practical en-

gineering applications. This will enhance the understanding on the thermomechanical response for the

particle reinforced composite materials including the concrete for Civil Engineering structures and other

advanced composite materials such as those commonly found in the aerospace applications.
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